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Abstract   Classification technologies have become increasingly vital to informa-

tion analysis systems that rely upon collected data to make predictions or informed 

decisions.  Many approaches have been developed, but one of the most successful 

in recent times is the Random Forest.  The Discriminant Random Forest is a novel 

extension of the Random Forest classification methodology that leverages Linear 

Discriminant Analysis to perform multivariate node splitting during tree construc-

tion. An extended study of the Discriminant Random Forest is presented which 

shows that its individual classifiers are stronger and more diverse than their Ran-

dom Forest counterparts, yielding statistically significant reductions in classifica-

tion error of up to 79.5%.  Moreover, empirical tests suggest that this approach is 

computationally less costly with respect to both memory and efficiency.  Further 

enhancements of the methodology are investigated that exhibit significant per-

formance improvements and greater stability at low false alarm rates. 

1  Introduction 

One of the greatest emerging assets of the modern technological community is in-

formation, as the computer age has enhanced our ability to collect, organize, and 

analyze large quantities of data.  Many practical applications rely upon systems 
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that are designed to assimilate this information, enabling complex analysis and in-

ference.  In particular, classification technologies have become increasingly vital 

to systems that learn patterns of behavior from collected data to support prediction 

and informed decision-making. Applications that benefit greatly from these meth-

odologies span a broad range of fields, including medical diagnostics, network 

analysis (e.g., social, communication, transportation, and computer networks), im-

age analysis, natural language processing (e.g., document classification), speech 

recognition, and numerous others.    

Many effective approaches to classification have been developed, but one of the 

most successful in recent times is the Random Forest.  The Random Forest (RF) is 

a nonparametric ensemble classification methodology whose class predictions are 

based upon the aggregation of multiple decision tree classifiers.  In this paper, we 

present an in-depth study of the Discriminant Random Forest (DRF), a novel clas-

sifier that extends the conventional RF via a multivariate node splitting technique 

based upon a linear discriminant function.   

Application of the DRF to various two-class signal detection tasks has demon-

strated that this approach achieves reductions in classification error of up to 79.5% 

relative to the RF.  Empirical tests suggest that this performance improvement can 

be largely attributed to the enhanced strength and diversity of its base tree classifi-

ers, which, as demonstrated in [3], lead to lower bounds on the generalization er-

ror of ensemble classifiers.  Moreover, experiments suggest that the DRF is com-

putationally less costly with respect to both memory and efficiency.  

This paper is organized as follows:  Section 2 summarizes the motivation and 

theory behind the Random Forest methodology.  We present the Discriminant 

Random Forest approach in detail in Section 3, and contrast the performance of 

the RF and DRF methods for two signal detection applications in Section 4. This 

study incorporates an assessment of statistical significance of the observed differ-

ences in algorithm performance. Finally, our conclusions are summarized in Sec-

tion 5. 
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2  Random Forests 

The random decision forest concept was first proposed by Tin Kam Ho of Bell 

Labs in 1995 [12, 13].  This method was later extended and formalized by Leo 

Breiman, who coined the more general term Random Forest to describe the ap-

proach [3]. 

In [3], Breiman demonstrated that RFs are not only highly effective classifiers, 

but they readily address numerous issues that frequently complicate and impact 

the effectiveness of other classification methodologies leveraged across diverse 

application domains.  In particular, the RF requires no simplifying assumptions 

regarding distributional models of the data and error processes.  Moreover, it eas-

ily accommodates different types of data and is highly robust to overtraining with 

respect to forest size.  As the number of trees in the RF increases, the generaliza-

tion error, PE * , has been shown in [3] to converge and is bounded as follows, 
 

    PE* ≤ ρ (1− s2)

s2
     (1) 

   s =1− 2 ⋅ PE tree
*      (2) 

 

where ρ  denotes the mean correlation of tree predictions, s represents the strength 

of the trees, and PE tree
*  is the expected generalization error for an individual tree 

classifier.  From (Eq. 1), it is immediately apparent that the bound on generaliza-

tion error decreases as the trees become stronger and less correlated.  To reduce 

the mean correlation, ρ , among trees, Breiman proposed a bagging approach [1, 

2], in which each tree is trained on a bootstrapped sample of the original training 

data, typically referred to as its bagged training set [5, 9].  Though each bagged 

training set contains the same number of samples as the original training data, its 

samples are randomly selected with replacement and are representative of ap-

proximately 3
2  of the original data.  The remaining samples are generally referred 

to as the out-of-bag (OOB) data and are frequently used to evaluate classification 

performance. 
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At each node in a classification tree, m features are randomly selected from the 

available feature set, and the single feature producing the “best” split (according to 

some predetermined criterion, e.g., Gini impurity) is used to partition the training 

data. As claimed in [3], small values of m, relative to the total number of features, 

are often sufficient for the forest to approach its optimal performance. In fact, 

large values of m, though they may increase the strength of the individual trees, 

induce higher correlation among them, potentially reducing the overall effective-

ness of the forest. The quantity m is generally referred to as the split dimension. 

Each tree is grown without pruning until the data at its leaf nodes are homoge-

neous, or until some other predefined stopping criterion is satisfied.  Class predic-

tions are then performed by propagating a test sample through each tree and as-

signing a class label, or vote, based upon the leaf node that receives the sample.  

Typically, the sample is assigned to the class receiving the majority vote.  Note, 

however, that the resulting votes can be viewed as approximately i.i.d. random 

variables, and thus, the Laws of Large Numbers imply that their empirical fre-

quency will approach their true frequency as the number of trees increases.  More-

over, the empirical distribution function from which they are drawn will converge 

to the true underlying distribution function [14].  Ultimately, we can treat the re-

sulting vote frequencies as class-specific probabilities and threshold upon this dis-

tribution to make a classification decision. 

3  Discriminant Random Forests 

The following section describes the Discriminant Random Forest methodology in 

greater detail.  As an ensemble classification method that utilizes bagging and 

randomized feature selection, the DRF shares the same theoretical foundation that 

affords the RF its remarkable effectiveness.  However, the key distinction between 

these techniques lies in the prescribed method for splitting tree nodes. The DRF 

leverages the parametric multivariate discrimination technique called Linear Dis-

criminant Analysis.   
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3.1  Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA), pioneered by R.A. Fisher in 1936, is a dis-

crimination technique that utilizes dimensionality reduction to classify items into 

distinct groups [8, 11, 16]. The LDA is an intuitively appealing methodology that 

makes class assignments by determining the linear transformation of the data in 

feature space that maximizes the ratio of their between-class variance to their 

within-class variance, achieving the greatest class separation, as illustrated in Fig. 

1.  The result is a linear decision boundary, identical to that determined by maxi-

mum likelihood discrimination, which is optimal (in a Bayesian sense) when the 

underlying assumptions of multivariate normality and equal covariance matrices 

are satisfied [15].  It can be shown that, in the two-class case, the maximum class 

separation occurs when the vector of coefficients, w, and intercept, b, used to de-

fine the linear transformation are as follows 

w = Σ−1 µ1 − µ0( ) ,     (3) 

    
b = −0.5 * (µ1 + µ0)

TΣ−1(µ1 − µ0) + log(
π 1

π 0

)   (4) 

where Σ is the common covariance matrix, µk  is the mean vector for class k and 

πk  is the prior probability of the kth class.  Typically, when data are limited, we es-

timate Σ with the pooled covariance estimate, SW , given by 

SW = Sk
k=1

N

∑  ,     (5) 

Sk = x ki − x k( ) x ki − x k( )T

i=1

Nk

∑ .   (6) 

In the above equations, x ki  and x k  denote the ith training sample of class k and the 

corresponding class sample mean, respectively. 



6  

 

Fig. 1.  LDA transformation and the optimal linear decision boundary. 

3.2  The Discriminant Random Forest Methodology 

Numerous variations of the Random Forest methodology have been proposed and 

documented in the literature, most of which address node-splitting techniques [4, 

6].  Many of these are based upon an assessment of node impurity (i.e., heteroge-

neity) and include entropy-based methods, minimization of the Gini impurity in-

dex, or minimization of misclassification errors.  Additional forest-based methods 

that focus upon alternative aspects of the algorithm include supplementing small 

feature spaces with linear combinations of available features [3], variations on 

early stopping criteria, selecting the split at random from the n best splits [6], and 

PCA transformation of random feature subsets [17].   

Our Discriminant Random Forest is a novel approach to the construction of a 

classification tree ensemble in which LDA is employed to split the feature data.  

Bagging and random feature selection are preserved in this approach, but unlike 

other forest algorithms, we apply LDA to the data at each node to determine an 

“optimal” linear decision boundary.  By doing so, we allow decision hyperplanes 

of any orientation in multidimensional feature space to separate the data, in con-

trast to the conventional random forest algorithm, whose boundaries are limited to 

hyperplanes orthogonal to the axis corresponding to the feature yielding the best 
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split.  We have illustrated this effect in Fig. 2, which depicts decision lines in two-

dimensional space for the RF (left) and the DRF (right).  

These two approaches to node splitting give rise to highly distinctive decision 

regions. Fig. 3 shows an example of a two-dimensional decision region created by 

each forest, in which bright blue and bright gold areas represent regions of high 

posterior probability for the positive and negative classes, respectively.  Darker 

areas indicate regions of greater uncertainty.  The decision region produced by the 

DRF is notably more complex, and its boundaries are fluid and highly intricate, 

fitting more closely to the training data.  

 

 
Fig. 2. Single feature splitting (left); LDA splitting (right) 

 

 

Fig. 3. Posterior probability (blue/gold represent the positive/negative classes) for the RF and DRF; the 

training set is overlaid, where white/maroon represent the positive/negative samples.  
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Fig. 4.  Pseudocode for the Discriminant Random Forest algorithm. 
 

Pseudocode for training a DRF on a data set of size N is provided in Fig. 4.  As 

previously discussed, the growth of the forest proceeds in a manner similar to the 

conventional Random Forest, with the notable exception of the decision boundary 

computation, which proceeds as described in Section 3.1.  Note that the termina-

tion criterion for the leaf nodes in the given algorithm relies upon homogeneity of 

the node data.  An alternative to this approach will be presented and discussed in 

Section 4.4. 

Train_DRF ( Data, m, NumTrees ): 
for (i = 0; i < NumTrees ; i++) 

Di = bootstrap sample of size N from Data 
Train_DRF_Tree ( Di , m) 

end for 
end Train_DRF 

Train_DRF_Tree( D, m): 
level  = 0 
create root node at level  with data D  
while not (all nodes at level  are terminal) 

for (non-terminal node j  at level )  
Fj  = sample m features  w/o replacement 
Dj ’  = project Dj  onto Fj   
compute wj  and  b j  using Dj ’ ; store in j  
DL,DR = split Dj  such that 

DL = xj if wj
Txj ’+ b j >0, ∀ xj ∈Dj ,  xj ’ ∈Dj ’ 

DR = xj  otherwise 
create left_child at level +1 with DL  
if ( DL is homogeneous) 

assign class( DL) to left_child 
end if 
create right_child at level +1 with DR  
if ( DR is homogeneous) 

assign class( DR) to right_child 
end if 

end for 
end while 
increment level  

end Train_DRF_Tree 
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4  DRF and RF: An Empirical Study 

In the following suite of experiments, we compare the classification performance 

of the RF (utilizing the misclassification minimization node-splitting criterion) 

and DRF for two signal detection applications:  (1) detecting hidden signals of 

varying strength in the presence of background noise, and (2) detecting sources of 

radiation.  Both tasks represent two-class problems, and like many other real-

world applications, the costs for distinct types of error are inherently unequal.  

Thus, we evaluate the performance of the RF and DRF methodologies in terms of 

false positives, also known as false alarms or type I errors, and false negatives, 

also known as misses or type II errors.  The false alarm rate (FAR), false negative 

rate (FNR), and true positive rate (TPR or detection rate) are defined as follows: 

FNRTPR

samplespositive

iedmisclassifsamplespositive
FNR

samplesnegative

iedmisclassifsamplesnegative
FAR

−=

=

=

1

#

#

#

#

   (7) 

4.1  Hidden Signal Detection 

The goal in the Hidden Signal Detection application is to detect the presence of an 

embedded signal.  In this application, it is assumed that each detection event re-

quires a considerable amount of costly analysis, making false alarms highly unde-

sirable.  Hence, we have computed the Area Under the Receiver Operating Char-

acteristic (ROC) Curve, or AUC, integrated over the FAR interval [0, 0.001] and 

scaled so that a value of 100% represents a perfect detection rate over this low 

FAR interval.  The resulting quantity provides us with a single value that can be 

used to compare the prediction performance of the classifiers. 

The data for these experiments are composed of two separate sets.  The training 
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data set, T1, consists of 7931 negative class samples (i.e., no embedded signal) 

along with two sets of positive class samples having 40% and 100% embedded 

signal strength (7598 and 7869 samples, respectively). The J2 data set contains 

9978 negative class samples and five positive classes having signal strengths of 

20%, 40%, 60%, 80% and 100% (7760, 9143, 9327, 9387 and 9425 samples, re-

spectively). The training and testing data sets for each of the following experi-

ments consist of the negative class combined with one of the available positive 

classes, as indicated in each case.  All data samples consist of eight features useful 

for detecting the presence of embedded signals.  We have applied both the RF and 

DRF forest methodologies at each split dimension 
  
(m ∈ {1,2,K,8})  in an effort to 

assess the impact of this parameter on their performance. 

4.1.1 Training on T1, Testing on J2 

Fig. 5 shows the plots of the AUC generated by training the forests on T1 and test-

ing on J2 at signal strengths of 40% and 100%.  Each RF or DRF was composed 

of 500 trees, a sufficient forest size to ensure convergence in AUC.  In 14 of the 16 

possible combinations of signal strength and split dimension, the DRF perform-

ance clearly exceeded that of the RF over the FAR region of interest.  In the re-

maining two cases, the difference in the detection rate was negligible.  Moreover, 

these results suggest that the DRF is more successful than the RF algorithm in de-

tecting weaker signals and better utilizes more input features.  As the split dimen-

sion increases, we would expect the trees to become more correlated for both 

methodologies, resulting in poorer prediction performance.  Fig. 5 suggests this 

trend, but the effect appears to be noticeably less severe for the DRF.  The tradeoff 

between tree strength and correlation with respect to m is discussed in greater de-

tail in Section 4.2.  ROC curves for both RF and DRF for the Hidden Signal De-

tection application are plotted in Fig. 6, again indicating that the DRF exhibits su-

perior performance across the low FAR region of interest. 
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Fig. 5. AUC for RF and DRF: (top) trained on T1, tested on J2 with 40% signal strength; (bottom) 

trained on T1, tested on J2 with 100% signal strength.  Each classifier is composed of 500 trees. 

 

 

 

Fig. 6. ROC curves for RF m=1 and DRF m=2 trained on T1, tested on J2 with 100% signal strength 

and 170K additional negative samples. 
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4.1.2  Prediction Performance for J2 with Cross Validation 

To more thoroughly explore the impact of signal strength on prediction perform-

ance, we trained and tested the RF and DRF on all signal strengths of the J2 data 

set.  We used 5-fold cross-validation (CV) to evaluate the performance of both 

classifiers.  In k-fold cross-validation, the data set is randomly partitioned into k 

equal-sized and equally-proportioned subsets.  For each run i, we set aside data 

subset i for testing, and we train the classifier on the remaining k-1 subsets.  We 

use the average of these k estimates to compute our performance estimate.   Fig. 7 

shows the percentage increase in the AUC achieved by the DRF for split dimen-

sionalities m ∈ {1,2}  as compared to the best-performing RF (i.e., m=1).  As we 

observed when training on T1, the DRF yields substantially better detection per-

formance on weaker signals. 

 
Fig. 7. Percentage increase in AUC on J2 for DRF m = 1, 2 over RF m = 1 at each signal strength.  

Each forest is composed of 500 trees. 

4.2  Radiation Detection 

The objective of the Radiation Detection effort is to detect the presence of a radia-

tion source in vehicles traveling through a radiation portal monitoring system that 
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measures the gamma ray spectrum of each vehicle quantized into 128 energy bins. 

The 128-dimensional normalized gamma ray spectra serve as the input features for 

the RF and DRF classifiers. The negative class is composed of radiation meas-

urements from real vehicles containing no radiation source.   

The data for the positive class were created by injecting a separate set of nega-

tive samples with spectra derived from two isotopic compositions of both Ura-

nium and Plutonium in IAEA Category 1 quantities [18]. These sets of positive 

and negative samples were then partitioned into non-overlapping, equally-

proportioned training and testing sets containing 17,000 and 75,000 samples, re-

spectively.   

The ROC curves in Fig. 8 show the TPR (i.e., detection rate) versus the FAR for 

RF and DRF. Over most of the low FAR range, the DRF maintains higher detec-

tion rates than the RF.  

 

 
Fig. 8. ROC curves in the Radiation Detection task for RF and DRF. 

 

The large number of features available for this application presents an ideal op-

portunity to thoroughly explore the behavior of the RF and DRF methodologies 
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for high split dimensions.  In particular, we wish to investigate their relative com-

putational efficiency, memory considerations, bounds on their generalization error 

(Eq. 1), the interplay between tree strength and correlation, and the impact of each 

of these characteristics on overall algorithm performance.  We have utilized the 

OOB data to compute these characteristics (see [3] for further details) at the 

minimal forest size required for each algorithm to achieve its peak performance.  

This can be readily observed in Fig. 9, which shows a plot of the minimum classi-

fication error (MCE) achieved by both classifiers with respect to 

  m ∈ {2 n |n = 0,1,K,7} .  The MCE is plotted as a function of the forest size and 

indicates that the peak DRF performance was achieved by a forest consisting of 

approximately 50 trees, far fewer than the 250 trees required by the RF. 

In Table 1, performance statistics have been provided for the RF yielding the 

best MCE and for a DRF whose performance exceeded that of the RF with respect 

to error, computational requirements and efficiency1.  Both were trained on a dual-

core Intel 6600 2.4 GHz processor with 4GB of RAM.  To compute memory us-

age, we assumed that each RF node must store an integer feature ID and its corre-

sponding floating-point threshold.  Each DRF node must store m integers for its 

selected feature IDs along with m+1 floating point values for its weight vector, w. 

 

TABLE 1.  PERFORMANCE SUMMARY FOR RF / DRF. 

 RF DRF Rel. Diff.  

Dimension 4 8 ------ 

Forest Size 250 50 80% 

Avg.Nodes/Tree 1757.69 718.16 59.1% 

Classification Error 4.37e-3 2.05e-3 53.0% 

Training Time (s) 315 48 84.8% 

Memory Usage (b) 439423 323172 26.5% 

 

                                                           
1 With respect to MCE alone, the best DRF achieved a 79.5% reduction relative to 
the RF. 
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Fig. 9. Minimum classification error (MCE) for the RF and DRF as a function of forest size on the Ra-

diation Detection dataset. 

 

 Table 1 indicates that the DRF was able to achieve a lower classification error 

rate than the RF while simultaneously reducing training time and memory usage 

by 84.8% and 26.5%, respectively.  The smaller DRF trees clearly contribute to 

this improvement in efficiency, but their reduced size also suggests a dramatic in-

crease in tree strength. 

From an empirical standpoint, a node splitting strategy that effects a better sepa-

ration of the data, such as the multivariate LDA technique, naturally generates 

smaller classification trees as the split dimensionality increases, as shown in Fig. 

10.  Though such trees might exhibit superior prediction capabilities (i.e., greater 

strength), we would generally expect the variation among them to decrease (i.e., 

increased correlation), potentially leading to a reduction in overall performance.   

The key to informative analysis of these two classification methodologies, as 

introduced in Section 2, lies in our ability to successfully characterize this inter-

play between the strength and correlation of individual trees. To provide further 

insight into these behaviors, Fig. 11 compares the OOB estimates of tree strength 

and correlation for the RF and DRF, along with their classification error and re-
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spective generalization error bounds plotted as a function of the split dimensional-

ity, m.  As expected, the strength of an individual DRF tree is, in general, signifi-

cantly greater than that of its RF counterpart.  Far more remarkable is the reduced 

correlation among the DRF trees for split dimensions up to m ≈ 90.  The relation-

ship between strength and correlation is typically regarded as a tradeoff [3], in 

which one is improved at the expense of the other, and the smaller DRF trees 

might naively be expected to exhibit greater correlation.  However, [3] suggests 

that each base classifier is primarily influenced by the parameter vector represent-

ing the series of random feature selections at each node.   In the multivariate set-

ting, the number of potential feature subsets at each node increases combinatori-

ally, dramatically enhancing the variability in the parameter vector that 

characterizes the classifier, which may explain the immediate drop in correlation 

as m increases.  As m approaches the cardinality of the feature set, however, we 

observe a sudden and severe rise in correlation, behavior that is consistent with the 

reduced variation in the nodal features used for splitting.      

 

 
Fig. 10. Average decision tree size for the RF and DRF as a function of the dimensionality, m. 
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Fig. 11. OOB statistics as a function of the dimensionality, m, on the Radiation Detection data set. 

 

Consistent with the generalization error bound (Eq. 1), Fig. 11 shows that 

strength has a greater impact on the classifier performance than the correlation.  

Even at the highest split dimensionality, the DRF classification error and error 

bound exhibit only minimal degradation.  In contrast, the RF error steadily in-

creases with the split dimensionality.  Moreover, the DRF bound is far tighter than 

that of the RF, even surpassing the RF classification error at m ≈ 25. 

Interestingly, though the strength and correlation of both methodologies exhibit 

similar trends, their classification errors exhibit opposing behavior, suggesting that 

the relationship between strength and correlation is more complex than can be 

fully explained by our initial experiments.  
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4.3  Significance of Empirical Results 

For the two signal detection applications discussed above, the performance of the 

DRF and RF methodologies was compared and contrasted via a series of experi-

ments. The empirical evidence presented indicated that the DRF outperformed the 

RF with respect to each of the identified measures of performance. However, a 

natural question arises: Are these observed differences statistically significant or 

simply an artifact of random fluctuations originating from the stochastic nature of 

the algorithms (e.g., bootstrap sampling of data and features)? To more thor-

oughly investigate this issue, we revisited the Hidden Signal Detection application 

introduced in Section 4.1. Specifically, using the original T1 training data set and a 

new testing set called J1, we wish to build statistical confidence regions surround-

ing “average” DRF and RF ROC curves. The resultant confidence regions could 

then be used to determine whether the observed differences in performance are 

significant. 

The J1 data set is statistically equivalent to the original data set, J2.  It contains 

179,527 negative class samples and 9,426 positive class samples with 100% em-

bedded signal strength. As in the prior Hidden Signal Detection experiments, all 

data samples consist of eight features useful for detecting the presence of embed-

ded signals.  

The J1 data set, though equivalent to J2, was not utilized in any fashion during 

the development of the DRF algorithm; consequently, it is an ideal testing data set 

for independently assessing the performance of the methodology. This is common 

practice in the speech recognition field and the broader machine learning commu-

nity and is employed to prevent the subtle tuning of a methodology to a particular 

set of testing data. 

For this study, we applied both the RF and DRF methodologies at all split di-

mensions m = {1,2,3,...,8}  and observed that the optimal RF occurred at m = 2, 

while the performance of the DRF peaked for m = 1. We will focus on these cases 

for the remainder of this discussion.  
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For each algorithm, 101 classifiers were trained and tested using variable ran-

dom seeds. Based upon the resulting ROC curves, a “median” ROC and corre-

sponding upper and lower confidence limits were computed for each methodology 

using a variant of the vertical averaging approach described by Fawcett [10]. Spe-

cifically, for each FAR value α ∈ [ 0.0,1.0] , the 101 corresponding detection rates 

were ranked, and their median detection rate MDR(α)  was computed along with 

their 97.5 and 2.5 percentiles. Using this data, the median ROC, consisting of the 

collection of points ]}0.1,0.0[:)(,{( ∈ααα MDR , and the 97.5 and 2.5 percentile 

bands were computed and are shown in Fig. 12.  

It is immediately apparent that the median ROC and associated percentile bands 

for the DRF and RF do not overlap for FAR values less than 10-3, providing con-

siderable evidence that the observed performance improvement exhibited by the 

DRF over this region is statistically significant. 

We can also examine these results from the perspective of the AUC. Specifi-

cally, we computed the AUC values for the 101 classification results of each 

methodology using FAR cutoff levels of 10-3, 10-4 and 10-5. Box plots of these re-

sults, with the medians and the 25th and 75th quantiles indicated, were computed 

and are shown in Fig. 13. Note that in each case, the interquartile ranges are non-

overlapping, further reinforcing our belief that the performance gain of the DRF 

over the RF is statistically significant in the lower FAR region of interest. 
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Fig. 12. The median ROC, 97.5 and 2.5 percentiles curves for the DRF (red, m = 1) and RF (black, m = 

2) classifiers using the Hidden Signal data sets (T1 and J1). 

 

 

Fig. 13. Box plots of the AUC values for the DRF (red, m = 1) and RF (black, m = 2) classifiers using 

the Hidden Signal data sets (T1 and J1). 

 



21 

4.4 Small Samples and Early Stopping 

Both the RF and DRF are tree-based ensemble classification methodologies whose 

construction relies fundamentally upon the processes of bagging and random fea-

ture selection.  In fact, the DRF shares many similarities with the RF and, conse-

quently, shares many of its most noteworthy advantages.  However, a critical ex-

ception is the parametric node-splitting process utilized by the DRF. The 

conventional RF approach to node splitting is accomplished via a univariate 

threshholding process that is optimized relative to some predetermined criterion 

(e.g., Gini impurity). Generally, parameters are not estimated during this process. 

In contrast, node splitting under the DRF regime is performed by building an LDA 

model at each node in an effort to determine an “optimal” linear decision bound-

ary. For the two-class problem, this requires the estimation of the class specific 

mean vectors µk , k = 0,1 and common covariance matrix Σ  at each node in the 

forest. 

This is an important distinction between the two methods that manifests itself in 

several ways. In particular, the training of the lower portions of all DRF trees 

(near the leaf nodes) must contend with progressively sparser data sets. Specifi-

cally, the LDA models are based upon point estimates (e.g., maximum likelihood 

estimates) of the mean vectors and common covariance matrix. For a split dimen-

sion of m ≥ 1, there are exactly p = 3m + m(m − 1) 2 parameters to estimate at 

each node. Hence, as the value of m increases, the estimation problem becomes 

increasingly challenging at the more sparsely populated nodes in the forest. In se-

vere cases, the common covariance matrix is not even estimable. This occurs ex-

actly when a node is impure (i.e., both classes are represented) and the feature 

vectors within each class are identical. In these cases, the DRF splitting process 

defaults to a geometric method (i.e., the decision threshold is taken to be the per-

pendicular bisector of the chord connecting the sample means of the two classes). 

This tactic has proven relatively effective in practice, but the more subtle issue of 

small sample size parameter estimation remains. 

Unfortunately, this is a common problem in statistics, and our study of the DRF 
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methodology would be incomplete without investigating the role parameter esti-

mation plays in its performance and reliability. A careful examination of the me-

dian ROC and the corresponding 97.5 and 2.5 percentile bands shown in Fig. 12 

reveals behavior that may provide insight into this issue. Note that the distance be-

tween the percentile bands increases noticeably as the FAR drops from 10-4 to 

5*10-6, suggesting a considerable increase in the variability of the experimental 

ROC curves over this extreme interval.  It is our conjecture that a contributing fac-

tor to this phenomenon is the sparseness of the data in the lower nodes of the DRF 

trees, which leads to greater instability in the parameter estimates.  

This behavior is even more pronounced for the RF, appearing at first glance to 

contradict the above conjecture. Though its underlying cause is not entirely clear, 

this contradictory behavior may be at least partially explained by the fact that each 

DRF node splitting decision utilizes two sources of information: the node data and 

the LDA model. The model may exert a dampening influence on the impact of the 

data, reducing variability at the leaf nodes and thus reducing variability in the 

ROC at low FAR values. In contrast, the RF is driven entirely by the data and 

hence may prove more vulnerable to data variation and sparseness. 

In any case, enriching the data at the lower DRF nodes in an effort to improve 

parameter estimation and ultimately enhance performance (e.g., increase the me-

dian detection rate while reducing variability) is a challenge we would like to ad-

dress. As a first attempt in this direction, we considered the optimal DRF (m = 1) 

for the Hidden Signal Detection application problem first described in Section 4.1. 

In this case, the LDA model building exercise reduces to estimating three univari-

ate Gaussian parameters. We have observed in our studies that the number of 

samples used to estimate these parameters near the leaf nodes is frequently very 

small – less than 10 in many cases. To more fully explore this issue, suppose we 

require that at least n = 30 samples be used to estimate the LDA parameters at 

any node in the forest. What is the impact of this constraint on the detection per-

formance?   

To address this question, we incorporated an early stopping criterion into our 

methodology whereby tree nodes continue to successively split until either purity 
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is achieved or the number of node samples drops below a prescribed value, n. This 

version of the DRF methodology is called “early stopping” DRF and is denoted by 

DRF-ES.  

For the following experiment, we once again randomly generated a collection 

of 101 forests, trained on T1 and tested on J1, for both the DRF and DRF-ES 

methodologies. Figure 14 presents the median ROC curves and the corresponding 

97.5 and 2.5 percentile bands for the standard DRF and the DRF-ES with n = 30. 

We observed that for FAR values less than approximately 5*10-2, the DRF-ES 

classifier significantly outperforms the conventional DRF classifier. Figure 15 

shows the corresponding box plots of the AUC values for FAR cutoff levels of 

10−3, 10−4 , and 10−5. Over each of these intervals, the interquartile ranges are non-

overlapping, reinforcing the statement that the performance gain of the DRF-ES 

over the DRF is significant in this case (m = 1). 

 
Fig. 14. The median ROC, 97.5 and 2.5 percentiles curves for the DRF (red) and DRF-ES (blue) classi-

fiers for m = 1 using the Hidden Signal data sets (T1 and J1). 
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Fig. 15. Box plots of the AUC values for the DRF (red) and DRF-ES (blue) classifiers at m = 1 using 

the Hidden Signal data sets (T1 and J1).  

 

 
Fig. 16.  Median ROC curves with 97.5 and 2.5 percentile bands for DRF (left) and DRF-ES (right) for 

the Hidden Signal Detection problem at m = 1, 2, 3 (T1 and J1). 

 

We then extended these studies and compared the performance of the DRF and 

DRF-ES classifiers for higher split dimensions of m = 2 and3.  Figure 16 shows 

the median ROC curves with percentile bands for the DRF and DRF-ES applied to 

the Hidden Signal Detection data sets. Note that in both cases the performance de-

grades as m increases, but the DRF-ES curves exhibit a “nesting” behavior (i.e.,  
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Fig. 17.  Median ROC curves with 97.5 and 2.5 percentile bands for the DRF (red) and DRF-ES (blue) 

for m = 1, 2, 3 (numbered top to bottom). 
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they have similar shape) that suggests greater performance stability relative to the 

DRF. Specifically, we see that the DRF-ES produces narrower percentile bands 

that are non-overlapping, while those of the DRF are wider and repeatedly cross. 

In Fig. 17, the DRF and DRF-ES median ROC curves are plotted head-to-head, 

together with their 97.5 and 2.5 percentile bands, for each value of m. Note that 

the performance advantage enjoyed by the DRF-ES degrades as m increases from 

1 to 2, evaporating entirely when m equals 3. In other words, as the number of pa-

rameters increases while holding the maximal sample size n = 30 constant, the 

DRF-ES performance gains are eroded. This behavior is consistent with our earlier 

conjecture that parameter estimation based upon sparse data, combined with in-

creasing model dimensionality, adversely affects the performance and stability of 

the DRF methodology.  However, it remains likely that the true mechanisms un-

derlying these behaviors are quite complex and defy simple explanation. Issues 

such as model choice, misspecification, etc., may all be contributing factors. 

4.5  Expected Cost 

As we discussed in Section 1, information analysis systems are constructed for the 

purpose of compiling large stores of (potentially multi-source) data to support in-

formed analysis and decision-making. Though many algorithms in the classifica-

tion field are designed to minimize the expected overall error in class predictions, 

it is common for real-world detection problems to be inherently associated with 

unequal costs for false alarms and miss detections (e.g., the Hidden Signal Detec-

tion application). Thus, a natural performance metric that quantifies the expected 

cost of an incorrect decision in such cost-sensitive applications is given by: 

 

)()()()1()( falsealarmcFARpmisscDRpEC ⋅⋅+⋅−⋅+= -   (8) 

 

where DR is the detection rate, p(·) is the prior probability for each class, and c(·) 

is the cost for each type of error.  To enable visualization of the general behavior 
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of this metric, Drummond and Holte developed “cost curves” that express ex-

pected cost as a function of the class priors and costs [7].  Specifically, cost curves 

plot the expected cost (normalized by its maximum value) versus the probability 

cost function (PCF), which is given by 

 

PCF = p(+) ⋅c(miss)

p(+) ⋅c(miss) + p(−) ⋅c( falsealarm)
.   (9) 

 

Assuming equal priors, PCF is small when the cost of false alarms is large rela-

tive to that of missed detections. In the Hidden Signal Detection application, the 

cost of a false alarm is considered to be at least 100 times more costly than a 

missed detection, making classifiers whose cost curves are lower at small values 

of PCF (e.g., PCF < 0.01) more desirable.  In Fig. 18, we have plotted the median, 

2.5 percentile, and 97.5 percentile cost curves for the RF, DRF, and DRF-ES.  We 

immediately observe that the DRF and DRF-ES appear to be significantly more 

effective than the RF, with DRF-ES achieving the smallest expected cost across 

the low PCF range of interest.  

 
Fig. 19.  Cost curves plotted for RF (black), DRF (red) and DRF-ES (blue) over the PCF range of in-

terest.  The discriminant-based classifiers outperform the RF over this range, with the DRF-ES achiev-

ing the lowest cost over all. 
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5  Conclusions 

The empirical results presented in Section 4 provide strong evidence that the Dis-

criminant Random Forest and its ES variant produce significantly higher detection 

rates than the Random Forest over the low FAR regions of interest. The superior 

strength and diversity of the trees produced by the DRF further support this obser-

vation.  In addition, this methodology appears to be more successful in the detec-

tion of weak signals and may be especially useful for applications in which low 

signal-to-noise ratios are typically encountered.  

We have also found that our methodology achieves far lower prediction errors 

than the RF when high-dimensional feature vectors are used at each tree node.  In 

general, we expect the performance of any forest to decline as the number of fea-

tures selected at each node approaches the cardinality of the entire feature set.  

Under these conditions, the individual base classifiers that compose the forest are 

nearly identical, negating many of the benefits that arise from an ensemble-based 

approach.  In such cases, the only variation remaining in the forest is due to the 

bagging of the input data.  Though we observed the expected performance degra-

dation for both forest methodologies at extremely high split dimensions, the effect 

was far less severe for the discriminant-based approach.  This result suggests a 

versatility and robustness in the DRF methodology that may prove valuable for 

some application domains. 

Our investigation into the effect of sparse data revealed that an early stopping 

strategy might help mitigate its impact on classification performance, ultimately 

increasing the detection rate over the lower FAR regions.  This advantage, how-

ever, is diminished as split dimensionality increases.  Though we did not thor-

oughly explore the sensitivity of the DRF performance to the early stopping pa-

rameter, n, we conjecture that increasing this parameter in response to increases in 

split dimensionality would be counterproductive.  Such a strategy would eventu-

ally eliminate the fine-grained  (i.e., small scale) class distinctions that are critical 

for effective classification.  However, at split dimension m = 1, the DRF enjoys a 

significant performance improvement in low FAR regions via early stopping. In 
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fact, for our applications, the DRF-ES at m = 1 outperformed the DRF over all 

dimensions. 

Overall, our empirical studies provided considerable evidence that the DRF is 

significantly more effective than the RF over low FAR regions.  Although compu-

tational efficiency may be adversely impacted by the more complex node-splitting 

of the DRF at extremely high dimensions, its peak performance is typically 

achieved at much lower dimensions where it is more efficient than the RF with re-

spect to memory and runtime.    

The behavior of the Discriminant Random Forest methodology is compelling 

and hints at complex internal mechanisms that invite further investigation.  How-

ever, we have found statistically significant evidence supporting this technique as 

a highly robust and successful classification approach across diverse application 

domains. 
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